A Novel Feature Clustering Algorithm for Evaluation of Descriptive Type Examination

نویسندگان

  • Krishna Mohan
  • M H M Krishna Prasad
  • Jung-Yi Jiang
چکیده

Objective type of Examination evaluation is easy in Computer world, but the descriptive type of question evaluation is more complex and there is no significant research has been taken place. So many descriptive type examinations like University Exams, GRE etc. , have been conducting from long time which is being evaluated manually by sending these types of questions and answers to the experts. This kind of exams needs automatic evaluation instead of manual correction to bring accuracy and reduce the evaluation time. In this paper, authors propose CosInfo algorithm a new solution to the above problem which can evaluate the papers automatically. This algorithm implemented the feature clustering for evaluation purpose that calculate the similarity between two documents and cluster the relevant documents in to different groups. Proposed algorithm uses the expected information function and parts of speech in English grammar as parameters to cluster the data, and also builds a model to classify the testing documents using SVM classification to assess the degree of similarity which will help to award the marks automatically. Experimental results show that the proposed method obtains better and accurate results to allocate marks compared with manual evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Classify Text based on CosFuzzy Logic

Objective type of Examination evaluation is easy in Computer world. But the descriptive type of question evaluation is more difficult and there is no significant research has been taken place. In this paper I propose a new solution to the above problem with text classification using the new fuzzy logic named CosFuzzy Logic. Document Clustering is a useful technique that organizes a large quanti...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014